Control and Cybernetics Multi-swarm That Learns *
نویسندگان
چکیده
This paper studies particle swarm optimization approach enriched by two versions of an extension aimed at gathering information during the optimization process. Application of these extensions, called memory mechanisms, increases computational cost, but it is spent to a benefit by incorporating the knowledge about the problem into the algorithm and this way improving its search abilities. The first mechanism is based on the idea of storing explicit solutions while the second one applies one-pass clustering algorithm to build clusters containing search experiences. The main disadvantage of the former mechanism is lack of good rules for identification of outdated solutions among the remembered ones and as a consequence unlimited growth of the memory structures as the optimization process goes. The latter mechanism uses other form of knowledge representation and thus allows us to control the amount of allocated resources more efficiently than the former one. Both mechanisms have been experimentally verified and their advantages and disadvantages in application for different types of optimized environments are discussed.
منابع مشابه
EMCSO: An Elitist Multi-Objective Cat Swarm Optimization
This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...
متن کاملPareto Optimal Design Of Decoupled Sliding Mode Control Based On A New Multi-Objective Particle Swarm Optimization Algorithm
One of the most important applications of multi-objective optimization is adjusting parameters ofpractical engineering problems in order to produce a more desirable outcome. In this paper, the decoupled sliding mode control technique (DSMC) is employed to stabilize an inverted pendulum which is a classic example of inherently unstable systems. Furthermore, a new Multi-Objective Particle Swarm O...
متن کاملDecentralized evolution of robotic behavior using finite state machines
Paper type: Research paper Purpose: In Evolutionary Robotics (ER), robotic control systems are subject to a developmental process inspired by natural evolution. In this article, a control system representation based on Finite State Machines (FSMs) is utilized to build a decentralized online-evolutionary framework for swarms of mobile robots. Design/methodology/approach: A new recombination oper...
متن کاملAdaptive swarm behavior acquisition by a neuro-fuzzy system and reinforcement learning algorithm
Purpose – A neuro-fuzzy system with a reinforcement learning algorithm (RL) for adaptive swarm behaviors acquisition is presented. The basic idea is that each individual (agent) has the same internal model and the same learning procedure, and the adaptive behaviors are acquired only by the reward or punishment from the environment. The formation of the swarm is also designed by RL, e.g., TD-err...
متن کاملCzech Technical University in Prague F 3 Faculty of Electrical EngineeringDepartment of Cybernetics Distributed Cohesive Control for Swarms of Micro
This thesis deals with distributed cohesive control of swarms of dimensionless particles and applicability of this approach for using with swarms of micro aerial vehicles. I have implemented a set of algorithms presented in [11] that leads to the cohesive swarm behavior of ground robots in a plane and extended these algorithms to 3D space for control of unmanned aerial vehicles. The behavior of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009